numpy.poly1d¶
-
class
numpy.poly1d(c_or_r, r=False, variable=None)[source]¶ A one-dimensional polynomial class.
A convenience class, used to encapsulate “natural” operations on polynomials so that said operations may take on their customary form in code (see Examples).
Parameters: c_or_r : array_like
The polynomial’s coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial’s roots (values where the polynomial evaluates to 0). For example,
poly1d([1, 2, 3])returns an object that represents
, whereas poly1d([1, 2, 3], True)returns one that represents
.r : bool, optional
If True, c_or_r specifies the polynomial’s roots; the default is False.
variable : str, optional
Changes the variable used when printing p from x to
variable(see Examples).Examples
Construct the polynomial
:>>> p = np.poly1d([1, 2, 3]) >>> print(np.poly1d(p)) 2 1 x + 2 x + 3
Evaluate the polynomial at
:>>> p(0.5) 4.25
Find the roots:
>>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j])
These numbers in the previous line represent (0, 0) to machine precision
Show the coefficients:
>>> p.c array([1, 2, 3])
Display the order (the leading zero-coefficients are removed):
>>> p.order 2
Show the coefficient of the k-th power in the polynomial (which is equivalent to
p.c[-(i+1)]):>>> p[1] 2
Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder):
>>> p * p poly1d([ 1, 4, 10, 12, 9])
>>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.]))
asarray(p)gives the coefficient array, so polynomials can be used in all functions that accept arrays:>>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9])
>>> np.square(p) # square of individual coefficients array([1, 4, 9])
The variable used in the string representation of p can be modified, using the
variableparameter:>>> p = np.poly1d([1,2,3], variable='z') >>> print(p) 2 1 z + 2 z + 3
Construct a polynomial from its roots:
>>> np.poly1d([1, 2], True) poly1d([ 1, -3, 2])
This is the same polynomial as obtained by:
>>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2])
Attributes
cA copy of the polynomial coefficients coefA copy of the polynomial coefficients coefficientsA copy of the polynomial coefficients coeffsA copy of the polynomial coefficients oThe order or degree of the polynomial orderThe order or degree of the polynomial rThe roots of the polynomial, where self(x) == 0 rootsThe roots of the polynomial, where self(x) == 0 variableThe name of the polynomial variable Methods
__call__(val)deriv([m])Return a derivative of this polynomial. integ([m, k])Return an antiderivative (indefinite integral) of this polynomial.